DNA methylation as a mediating mechanism in the development of neurotoxicity after methotrexate treatment

Rachel Theobald^{1a}, Alex McDonnell¹, Victoria Forster², Jill M^cKay³. School of Biomedical Sciences¹, Newcastle University, 130322474^a, Northern Institute for Cancer Research². Institute of Health & Society³

Background

- Methotrexate (MTX), an anti-folate drug, is frequently administered to treat childhood acute lymphoblastic leukaemia (ALL)
- Nitrous oxide (N_2O) , which depletes vitamin B_{12} , is occasionally used in sedation during MTX treatment
- • Since MTX and N₂O both influence one-carbon metabolism (Fig. 1), they may alter DNA methylation
- DNA methylation, the addition of a methyl group to cytosine's at CpG sites (phosphate linking cytosine to guanine), is important for gene regulation, and therefore may be one mechanism involved in treatment toxicity

Aims

- Investigate global and gene-specific DNA methylation in response to MTX and vitamin B_{12} depletion (as a proxy for N_2O treatment) in neuronal cells
- Investigate vitamin B_{12} supplementation on DNA methylation patterns as a potential approach to reduce toxicity risk

Methods

- Neuronal-like cells (SH-SY5Y, DAOY) were grown in media containing dialysed (to mimic B₁₂ depletion) or normal foetal bovine serum (FBS) with varying concentrations of MTX (0, 10, 20 μ M), and with B₁₂ reintroduced at different concentrations (0, 1, 10ng/mL) to dialysed FBS treated cells
- DNA was extracted and bisulfite modified
- Bisulfite modification deaminates cytosine to uracil, but is prevented by methylation, providing a way to discriminate methylated CpGs
- DNA methylation was assessed globally using the Line1 assay and at specific gene loci, ASCL2 and SH3GL3 (previously found to have altered methylation in response to folate and/or B_{12}) using pyrosequencing Differences in methylation between treatments were analysed using Univariate analysis of variance with Bonferroni Post-Hoc test in SPSS.

Results

- For both cell lines, there was no significant effect of media type on *Line1* or gene specific DNA methylation
- MTX treatment significantly increased *Line1* (SH-SY5Y p< 0.001, DAOY p=0.003) and ASCL2 (SH-SY5Y p=0.042, DAOY p<0.001) methylation (Fig.1A-D)

Figure 2: Effect of MTX treatment on A) *Line1* methylation in SH-SY5Y cells, B) *Line1* methylation in DAOY cells, C) ASCL2 methylation in SH-SY5Y cells and D) ASCL2 methylation in DAOY cells. Groups not showing the same letter differ P>0.05.

• Re-introducing B₁₂ altered *Line1* DNA methylation in *SH-SY5Y cells (p*= 0.035), and ASCL2 DNA methylation in DAOY cells (p < 0.001), whereby 1µM B₁₂ treated cells were more methylated (Fig. 3). Post-hoc tests revealed no significant differences between individual groups for *Line1* methylation in *SH-SY5Y cells*

• Significant interactions were observed between MTX and B₁₂ for Line1 (SH-SY5Y p= 0.003), (Fig. 4A) and ASCL2 methylation (SH-SY5Y p= 0.012, DAOY p<0.001), (Fig.4B and C), whereby 10 μ M levels of B₁₂ appear to be protective against methylation changes in response to MTX treatment

methylation in DAOY cells

Summary

- interventions against MTX related toxicity.
- wide methylation will offer further insights.

Acknowledgements

Funding from the Wellcome Trust, Rank Prize Fund and NECCR. I thank Dr. Victoria Forster for the preparation of the neuronal cell lines, my supervisor Dr. Jill M^cKay and Jessica Timms.

Figure 4: Effects of an interaction between MTX treatment and B₁₂ concentrations on A) *Line1* methylation in SH-SY5Y cells, B) ASCL2 methylation in SH-SY5Y cells and C) ASCL2

 Our data suggests altered methylation may be one mechanism mediating treatment-related neurotoxicity, and may also mediate other toxicities • The potential protective effect of B_{12} against these changes may provide a plausible biomarker for toxicity prediction and/or targeted

Future replication studies and the investigation of whole genome-